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Introduction: In preparation for the upcoming PACEmission, we explore the feasibility
of a neural network-based approach for the conversion ofmeasurements of the degree
of linear polarization at the top of the atmosphere as carried out by the
HARP2 instrument into estimations of the ratio of attenuation to absorption in the
surface layer of the ocean. Polarization has been shown to contain information on the
in-water inherent optical properties including the total attenuation coefficient, in
contrast with approaches solely based on remote sensing reflectance that are
limited to the backscattered fraction of the scattering. In turn, these properties may
be furthercombinedwith inversionalgorithms to retrieveprojectedvalues for theoptical
and physical properties of marine particulates.

Methodology: Using bio-optical models to produce synthetic data in quantities
sufficient for network training purposes, and with associated polarization values
derived from vector radiative transfer modeling, we produce a two-step algorithm
that retrieves surface-level polarization first and attenuation-to-absorption ratios
second, with each step handled by a separate neural network. The networks use
multispectral inputs in terms of the degree of linear polarization from the polarimeter
and the remote sensing reflectance from the Ocean Color Instrument that are
anticipated to be fully available within the PACE data environment.

Result and Discussion: Produce results that compare favorably with expected values,
suggesting that a neural network-mediated conversion of remotely sensed polarization
into in-water IOPs is viable. A simulationof thePACEorbit andof theHARP2fieldof view
further shows these results to be robust even over the limited number of data points
expected to be available for any given point on Earth’s surface over a single PACE transit.
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1 Introduction

Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) is a NASA Earth-observing satellite
mission that, in the words of the mission’s official website, “[...] will help us [...] understand how
the ocean and atmosphere exchange carbon dioxide,” “[...] will reveal how aerosols might fuel
phytoplankton growth in the surface ocean,” and “will extend and expand NASA’s long-term
observations of our living planet” (NASA PACE, 2022a). The mission science objectives, as
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further stated on the PACE mission website (NASA PACE, 2022b),
include extending key systematic ocean biological, ecological, and
biogeochemical climate data records and cloud and aerosol climate
records, as well as improving our understanding of how aerosols
influence ocean biogeochemical cycles and ecosystems and how
ocean biological and photochemical processes affect the atmosphere.
Polarization of light will be at the core of the mission, with two multi-
angular polarimeters being included onboard the satellite: the SPEXone
and HARP2 instruments. The latter in particular is a wide-swath
polarimeter, with a field of view of 94° cross track; ±57° along track
for four wavelengths (441, 549, 669, 873 nm), of which the first three are
narrow band (15, 12, 16 nm respectively) and are of interest in this
study. The instrument will allow the measurement of polarization at
60 along track viewing angles for the 669 nmband, and at 10 along track
viewing for the others (NASA PACE, 2022c). Polarization is an
important observable in Earth remote sensing, as it is recognized to
be affected by the physical and optical properties of particles suspended
both in the atmosphere and the oceans as light travels through air and
water (Mishchenko et al., 2004; Chami and Platel, 2007; Lotsberg and
Stamnes, 2010; Knobelspiesse et al., 2011; Chowdhary et al., 2012;
Ibrahim et al., 2016). Consequently, polarization measurements in
conjunction with traditional radiometric measurements are
increasingly being treated as a crucial direction for remote sensing
research (Jamet et al., 2019). The polarization of light is most frequently
used to characterize aerosols (Mishchenko and Travis, 1997): this is due
to the fact that upwelling light from the ocean is in general weaker, not
only because of the substantially smaller relative refractive indices of
hydrosols compared to aerosols, but also because of the effect of Snell’s
window, whereby highly polarized light with a maximum near the
critical angle undergoes total reflection and is partially prevented from
leaving the water (Gilerson et al., 2020). Nevertheless, studies have
shown that the polarization of light leaving the water surface still carries
substantial information on the inherent optical properties of the water
itself and of the hydrosols within it (Chami and McKee, 2007; Chami
and Platel, 2007; Loisel et al., 2008; Tonizzo et al., 2009; Lotsberg and
Stamnes, 2010; Ibrahim et al., 2012). In particular, it carries information
on both total scattering and total attenuation that is otherwise not
available through methods based on remote sensing reflectance (Rrs)
alone, since Rrs is only proportional to the backscattering coefficient.
Accordingly, severalmethodologies have been proposed for the retrieval
of water parameters from polarimetric sensing (Chami et al., 2001;
Loisel et al., 2008; Lotsberg and Stamnes, 2010; Tonizzo et al., 2011;
Ibrahim et al., 2012; Ibrahim et al., 2016), and although many of them
require knowledge of the Mueller matrices of hydrosols (Voss and Fry,
1984), aerosols (Zhang et al., 2017; Gilerson et al., 2018) and the water-
air interface (Foster and Gilerson, 2016), some inroads have been made
towards the determination of these as well (Foster et al., 2022). Even
with fixed Mueller matrices, studies have been able to model the degree
of linear polarization (DoLP) of the upwelling light field with fidelity,
although in this case associated measurements of the inherent optical
properties (IOPs) of the water were needed (Gleason et al., 2018).
Finally, knowledge of the polarization of light is also critical for the
accurate determination of the reflectance coefficient of the sea surface,
an important quantity both for above-water measurements and for
atmospheric correction procedures (Fougnie et al., 1999; Harmel et al.,
2012; Mobley, 2015; Foster and Gilerson, 2016; Zhang et al., 2017;
Gilerson et al., 2018; Gilerson et al., 2020). Overall, combining multi-
angular and multispectral polarimetric data is expected to be the best

approach towards using the specific sensitivity of polarization to the
geometry of the light field and to scattering processes for the
determination of the optical and physical properties of the water
and of the particulate content suspended therein (Harmel, 2016).
Given all of the above, while the main science goals of HARP2 are
also targeted at clouds and aerosols, data from the instrument can
potentially be used to extract information from the oceans as well once
appropriately corrected for atmospheric effects. The wide angular
aperture of the instrument is particularly attractive in this context,
as past studies have shown that the angular geometry of the radiative
processes involved, including the relative positions of the Sun and
sensor, strongly affect the relationship between the DoLP of the light
leaving the water surface and the IOPs of the water itself, expressed as
the ratio between total attenuation and total absorption (c/a) (Ibrahim
et al., 2012; Ibrahim et al., 2016; Gilerson et al., 2020). The c/a ratio is a
convenient property to determine, because if associated with
measurements of the total absorption a (Lee et al., 2002), which
itself may be retrieved from satellite remote sensing after
atmospheric correction, allows for the direct determination of the
total beam attenuation c. This may be used in turn as input for
empirical inversion models to estimate properties of hydrosols such
as the slope of their size distribution, their bulk real refractive index as
well as the backscattering ratio associated with them (van de Hulst,
1981; Twardowski et al., 2001; Lee et al., 2002). Knowledge of these
properties can help better constrain the information on oceanic carbon
(Cetinić et al., 2012) and thus improve our understanding of the carbon
cycle and of carbon sequestration, an important goal for the ocean color
community and for PACE itself (NASA PACE science objectives page).
In preparation for the PACE mission, we thus set out to explore the
feasibility of an algorithm for directly converting measurements of the
DoLP at the top of the atmosphere (TOA) into DoLP values just above
the surface of the water (DoLP0+). In parallel, we also studied how to
apply a similar method to convert the DoLP0+ values into
corresponding values of the c/a ratio in the surface layer of the
ocean, completing the retrieval pipeline from PACE data to water
IOPs. In June 2022, we published the preliminary results of our work
(Agagliate et al., 2022). There, we identified avenues of further
investigation, particularly the need for a thorough study of the
impact of input uncertainties on the quality of the final IOP
retrieval, specifically from the point of view of the simplifications
inherent to the modeling of ocean and atmosphere required to
produce our synthetic dataset. Here, we now present the results of
our studies in full detail: after describing our dataset, the models used to
produce it and the neural networks designed to process it, we then look
at various sources of uncertainty one by one before combining them all
together to note their total effect on the IOP retrieval. Additionally, we
look at the specific way PACEwill acquire data during its orbital transits
and discuss how it may impact the quality of our IOP estimations.

2 Materials and methods

2.1 Neural network approach

The matrices that describe light transport through the water-air
interface are known to be highly sensitive to parameters like viewing
geometry, wind speed, aerosol optical thickness and even sensor
field-of-view, particularly in the case of reflection processes.
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Transmission matrices are less sensitive to these parameters, but
polarization components can also vary substantially in the presence
of high winds (Foster and Gilerson, 2016). This sensitivity guided
the decision to split our procedure in two discrete steps, allowing for
better monitoring of radiative transfer at the interface separately
from the atmospheric correction between TOA and the surface.
While in theory it is possible to construct a single neural network to
output both DoLP0+ and c/a at the same time, dealing with these
two-halves separately offers more flexibility and oversight over the
retrieval process. This two-step approach is supported by the fact
that the uncertainties of c/a and DoLP0+ values are structured very
differently, for example, due to the contribution of skylight
reflectance to the latter, adding to the value of being able to treat
these two quantities separately. Furthermore, there is practical
convenience in explicitly splitting the procedure, since in doing
so data collection becomes independent between the two-halves: for
example, if during a measurement campaign in-water c/a values
could not be measured and only DoLP0+ field data from ship-based
polarimetry were available, we could still use it for training purposes
in at least one-half of the NN processing to work with PACE data.
For both halves of the retrieval, we chose to apply artificial neural
networks (ANNs) to the task: in doing so, we were encouraged by the
work of Gao and colleagues (Gao et al., 2021a; Gao et al., 2021b),
who took advantage of the deep learning capabilities of ANNs to
build a fast algorithm capable of determining aerosol physical
properties as well as water leaving signal from PACE-like
polarimetry data retrieved during the preparatory AirHARP
campaign, designed to test the functionality of the
HARP2 instrument using an airborne analog. These works add
to an increasingly rich literature applying the predictive power of
neural networks to the remote sensing of aerosol and ocean
properties and to Earth observation in general, both in
polarimetric and non-polarimetric contexts (Schiller and
Doerffer, 1999; Doerffer and Schiller, 2000; Tanaka et al., 2004;
Ioannou et al., 2013; Chen et al., 2014; Chen et al., 2015; El-habashi
et al., 2016; Di Noia et al., 2017; Hieronymi et al., 2017; Stamnes
et al., 2018a; Stamnes et al., 2018b; Chen et al., 2018; Fan et al., 2020;
Syariz et al., 2020; Fan et al., 2021; Liu et al., 2021). In our own ANN
procedure, each half of the retrieval is handled by a dedicated neural
network. The first neural network takes in atmospheric parameters
and remote sensing reflectance as inputs together with DoLPTOA
values and angular positions, and outputs corresponding
estimations of DoLP0+. The second network then takes care of
the retrieval of the in-water c/a ratio using the DoLP0+ values
obtained in the first step as inputs together with the same
atmospheric parameters, angles and remote sensing reflectance
values as before. By their nature, ANNs require very large
amounts of data to be trained properly. Due to the scarcity of
appropriate real-world data on which to carry out that training, we
instead generated synthetic datasets of ocean and atmosphere
properties paired with corresponding DoLP values, using bio-
optical models (Ibrahim et al., 2016) to generate IOPs and other
physical parameters paired with a vector radiative transfer (VRT)
code for the calculation of polarized light intensities both near the
surface and at its top. Polarimetric measurements both in-water
(Tonizzo et al., 2009; You et al., 2011; Gilerson et al., 2013) and
above water (Harmel et al., 2011; Ottaviani et al., 2018) have been
found to agree well with VRT simulations, making them an effective

tool for retrieval algorithms. Although the lack of real-world data
(particularly in the case of DoLPTOA-DoLP0+ pairs) means that we
cannot construct a “field-ready” algorithm yet, the use of synthetic
data fits well the exploratory nature of this study, and lets us
construct a theoretical framework over which the final version of
the algorithm may be built once data is finally available.

2.2 Synthetic dataset

Apart from limited cases or otherwise particular situations such
as transfer learning applied to pre-trained networks, artificial neural
networks require large amounts of data to be effectively trained. In
situ optical data is often very labor intensive in its acquisition, and as
such often suffers from limited coverage in terms of both time and
space. When approaching a new problem, appropriate data may not
even be available at all. In our case, while pairs of in situ DoLP0+ and
in-water IOPsmay be acquired in the field relatively easily, acquiring
several thousands of such pairs is a rather daunting endeavor.
Indeed, available datasets are sparse enough to be insufficient for
ANN training purposes. As for pairs of in situ DoLP0+ and
corresponding DoLPTOA values, to the extent of our knowledge
no such sets exist currently, and even less so in the specific
multispectral configuration expected for PACE. It is likely that
no such dataset may exist until the launch of PACE itself.
Luckily, a carefully crafted approximation of the ocean-
atmosphere system is a useful tool for creating large datasets
that, as long as they adequately represent the physical reality
encountered in situ, may also be used as functional substitutes
for real measurements to construct a working ANN. Accordingly,
for this study we decided to produce synthetic datasets pairing in-
water IOPs with DoLP values both at the surface and the top-of-
atmosphere level. To generate the datasets, we used slightly modified
versions of two coastal bio-optical models used by Ibrahim et al.
(2016), one each for Case I and Case II waters. We invite the reader
to consult the original work for the rationale behind each equation:
here we will limit our description to the specific ranges used. The
models randomly generate sets of properties, both optical and
physical, then estimate IOPs for corresponding hydrosols
through a series of empirical calculations (Figure 1; Tables 1, 2).
As shown in Figure 1, in the Case I bio-optical model the scattering
matrices for the hydrosols are set as purely equivalent to those of
phytoplankton. The scattering matrices themselves were pre-
calculated using Mie theory, therefore under the assumption of a
power law-like distribution of particles with set bulk real refractive
indices and size distribution slopes. For phytoplankton, the real
refractive index was kept fixed at 1.05 relative to water, while slope
values (ξph) were randomly generated between 3.5–4.5 in a
uniformly distributed fashion. Chlorophyll concentrations were
generated logarithmically, i.e., the concentration was produced as
the exponential of values generated in a uniformly distributed
fashion between the natural logarithm of 0.005 and 1.5 mg m−3,
inducing a skew towards lower concentrations. Part of the data was
generated from tabulated sources, specifically the water theoretical
scattering (Morel, 1974) and absorption (Pope and Fry, 1997)
coefficients and the numerical coefficients for generating the
spectral absorption of phytoplankton (Bricaud et al., 1998). The
tabulated values for water scattering were in turn used in our VRT
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simulations to compute the scattering matrices of pure water. All
other quantities were instead generated with the method and ranges
indicated in Table 1, and then combined as described in Figure 1 to
produce the final combination of properties in each set. Additional
changes to the Case I model as originally presented in Ibrahim et al.
(2016) were made by adapting the formulation presented in the June

2003 Ocean Color Algorithm Working Group IOCCG report
(IOCCG, 2003) for the spectral scaling of phytoplankton
attenuation by way of the n1 exponent, as well as the formulation
of Morel andMaritorena (2001) for CDOM absorption at 440 nm as
a function of chlorophyll concentration. For the Case II bio-optical
model, scattering matrices for the hydrosols were calculated as a mix

FIGURE 1
Flow diagram of the Case I and Case II bio-optical models.
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of phytoplankton and non-algal-particles (NAP) scattering
matrices, as described in Figure 1. The phytoplankton and NAP
scattering matrices themselves were once again pre-calculated using
Mie theory. For NAP (the concentration of which was calculated
empirically as per Table 1 and ranged between ~0.13–24.7 g m−3),
the real refractive index was let vary between 1.15 and 1.22 relative to
water with a 0.01 resolution, and was selected randomly for mixing
in each generated set. Slopes (ξNAP) were let vary between 3.5 and
4.5, also selected randomly in a uniformly distributed fashion. For
phytoplankton, the real refractive index and the ξph values were
generated in the same fashion as the Case I model, while chlorophyll
concentration was generated in a uniformly distributed fashion
between 1 and 25 mg m−3. Part of the data was once again
generated from tabulated sources, i.e., the specific absorption of
the pico- and micro-sized fractions of the phytoplankton population
(Ciotti et al., 2002), for which the Sf mixing factor was kept in the
0.1–0.3 range typical for coastal waters, in addition to the water
theoretical IOPs. Like the Case I bio-optical model, all other
quantities were generated with the method and ranges indicated
in Table 1, and then combined as described in Figure 1 to produce
the final combination of properties in each set. Overall, for both Case
I and Case II, 3,000 sets of properties were generated to train the
neural networks, to be further expanded by the multiple
permutations of Sun and sensor angles. All properties were
generated at 440, 550 and 665 nm, rounding the 441, 549 and
669 HARP2 bands for clarity and comparability with the
literature and other orbital platforms. For testing purposes, a
further 300 sets of properties were similarly generated.

2.3 VRT code

The calculations of polarized intensity values at the ocean
surface level and at the TOA were carried out using the RayXP

vector radiative transfer code (Zege et al., 1993; Tynes et al., 2001).
The ocean-atmosphere system used in the code was modeled with
four layers in total, three of them atmospheric and one oceanic, with
a wind-roughened surface in between. The topmost atmospheric
layer was defined to account for 64.74% of the total Rayleigh optical
thickness (ROT), while the middle layer accounted for the entire
aerosol optical thickness and for an additional 35% of the ROT. The
above-surface location of the virtual sensor in the model was set
between the middle and bottom layers in the atmosphere, with the
latter accounting for the remaining 0.26% of the ROT. The single
oceanic layer was set up to be optically deep to avoid any influence
from the sea floor. Aerosol properties were defined in terms of
aerosol optical thickness (AOT) and of Ångström exponent at
440 nm, and both were generated randomly from a uniform
distribution focusing on small aerosol loadings, i.e., with AOT
(440 nm) ranging between 0 and 0.2 (Table 1). Wind speed
values were similarly generated randomly from a uniform
distribution. The scattering matrices defining the optical
properties of the aerosols were taken from the parameter library
of the RayXP software. These consist in tabulated values for
20 wavelengths over the 337–3,500 nm range, with intermediate
values retrieved through linear interpolation. In this study, we used
the “oceanic” and “continental” settings, meant to simulate aerosols
in a Case I and Case II scenario respectively. The “oceanic” setting is
part of a set of simple aerosols based on the microphysical models
given in Lenoble and Broquez (1984), and consists in particles with a
mean radius of 0.458 µm and a real refractive index of ~1.38 over our
wavelengths of interest. For this aerosol type, single scattering albedo
is fixed at 1 and extinction efficiency ranges from 2.34 to
2.44 between 440 and 665 nm. The “continental” setting is
instead a mix of the other simple aerosol models, thus including
several particle types with discrete mean radii and real refractive
indices. For this aerosol type, single scattering albedo is ~0.89 over
our wavelengths of interest, with extinction efficiency ranging from

TABLE 1 Input generation ranges for the Case I and Case II bio-optical models of Figure 1 with additional atmospheric parameters and angular ranges used in the
VRT calculations.

Case I Case II

Uniformly generated Uniformly generated Normally generated

ξph � 3.5: 4.5 Sf � 0.1: 0.3 aNAP(440) � 0.56 × aph(440) × p1

R � 0: 1 cph* (550) � 0.12: 0.50 p1 � 1, σp1 � 0.25

Logarithmically generated ξph � 3.5: 4.5 ag(440) � 0.7 × aph(440) × p2

[Chl] � eClog (mgm−3) ξNAP � 3.5: 4.5 p2 � 1.5, σp2 � 0.25

Clog � log(0.005): log(1.5) [Chl] � 1: 25 (mgm−3) Derived

aNAP
* (440) � 0.02: 0.08 [NAP] � aNAP(440)

aNAP
* (440) (gm−3)

SNAP � 0.007: 0.0015

Sy � 0.01: 0.02

Angular ranges Additional parameters

φv � 40°: 5°: 180° vwind � 2.5: 12.5m s−1 ROT(440nm) � 0.2428

θv � 0°: 5°: 60° Ångström exp . � 0.8: 1.5 ROT(550nm) � 0.0973

θs � 0°: 5°: 70° AOT(440nm) � 0: 0.2 ROT(665nm) � 0.0450
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2.01 to 1.26 between 440 and 665 nm. The 3,000 sets of properties in
the training sets were computed using aerosols with a “continental”
setting for Case II, and with an “oceanic” setting for Case I. The
300 sets of properties in the testing sets were instead computed using
aerosols with both “continental” and “oceanic” settings for both
Case I and Case II, to test the impact on the results of an aerosol mix
that deviates from training expectations. Rayleigh optical thickness
values were set at typical levels for the wavelengths of interest in a
marine context, and obtained from tabulated data (Bodhaine et al.,
1999). With the scenario thus set up, the VRT code was then used to
compute corresponding DoLP0+ and DoLPTOA values over many
different angular configurations of Sun and sensor. Angle ranges
were 40°:180° in 5° increments for the relative azimuth (ϕv), avoiding
areas of direct Sun glint, 0°:60° in 5° increments for the sensor view
zenith (θv) and 0°:70° in 5° increments for the Sun zenith (θs). In
total, this produced 5,655 angular permutations, each with a
corresponding DoLP value, for each individual set of oceanic and
atmospheric properties in the training and testing sets (Table 1).
Figure 2 shows two examples of these DoLP0+ and DoLPTOA sets,
one each for the Case I and Case II models. It should be noted that,
although the relative azimuth range was restricted to avoid Sun glint,
other undesirable contributions such as those from reflected skylight
were kept as part of the DoLP calculations: this not only allows the
possibility of future validation through direct comparison with ship-

based polarimeter measurements, but is also in accordance with the
goals of this study, i.e., trying to account for the propagation of light
from the water through the interface and then through the
atmosphere at multiple angles via neural networks without
having to rely on the traditional correction methods used to
isolate the DoLP of water-leaving radiance.

2.4 ANN architectures

The 5,655 angular permutations considered within each VRT
simulation in combination with the 3,000 individual sets of oceanic
and atmospheric properties in the ANN training sets added up to a
total of 16,965,000 distinct DoLP values. Similarly, the 300 sets of
properties in the ANN testing sets added up to a total of
1,696,500 distinct DoLP values over all permutations. From
among the several millions of DoLP values and corresponding
properties in the training sets, 3,000,000 were randomly selected
to function as validation during the development phase of the ANN
training, i.e., as a subset against which to test during the training of
the ANN. The validation frequency was set at 3 times per epoch,
with a total of 12 epochs (the minibatch size was set as the square of
the total number of input sets used for training). All selected input
features were verified to be independent of each other (correlation

TABLE 2 List of symbols and acronyms for the bio-optical model parameters and neural network inputs and outputs.

DoLP0+ Degree of linear pol. Just above the sea surface [Chl] Chlorophyll concentration

DoLPTOA Degree of linear polarization at the TOA [NAP] Non-algal particles concentration

Rrs Remote sensing reflectance Sf Algal fractions mixing term (size parameter)

c/a Total attenuation to total absorption ratio SNAP Non-algal particles absorption spectral scaling factor

a Total absorption Sy CDOM absorption spectral scaling factor

aph* Specific absorption of phytoplankton Yph Spectral slope of phytoplankton

apico* Specific absorption of picoplankton fraction YNAP Spectral slope of non-algal particles

amicro
* Specific absorption of microplankton fraction A, E Num. coefficients for phytoplankton abs. generation

aph Absorption of phytoplankton p1 , p2 Num. coefficients for algal & CDOM absorption gen

aNAP Absorption of non-algal particles n1 ,R Spectral slope of algal attenuation and coeff. for its gen

ag Absorption of colored dissolved organic matter (CDOM) Fph Phytoplankton scattering matrix

aw Absorption of water FNAP Non-algal particles scattering matrix

c Total attenuation Fbulk Bulk scattering matrix

cph* Specific attenuation of phytoplankton ωp Particulate scattering to particulate attenuation ratio

cph Attenuation of phytoplankton τp Particulate optical depth

cNAP Attenuation of non-algal particles φv Sun-sensor relative azimuth

b Total scattering θv Sensor viewing angle

bph Scattering of phytoplankton θs Sun zenith angle

bNAP
* Specific scattering of non-algal particles vwind Wind speed

bNAP Scattering of non-algal particles AOT Aerosol optical thickness

bw Scattering of water ROT Rayleigh optical thickness
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score ~0) and were standardized before training. The choice of
features was informed by the results presented by Gao et al. (2021a);
Gao et al. (2021b), suggesting that aerosol properties, wind speed
and remote sensing reflectance will be available with good quality in
the PACE data environment. However, in our study, remote sensing
reflectance values were directly derived from the IOPs generated in
the synthetic dataset using the following set of empirical
relationships (Lee et al., 2002):

u λ( ) � bb λ( )/ a λ( ) + bb λ( )( ) (1)
rrs λ( ) � 0.125 u λ( )[ ]2 + 0.089u λ( ) (2)
Rrs λ( ) � 0.52rrs λ( )/ 1 − 1.7rrs λ( )[ ] (3)

Figure 3 offers an overview of the spectral profiles of Rrs and
c/a in both the Case I and Case II test sets. Rrs and c/a appear to
be strongly correlated in both cases, but, crucially, feature an
inversion of the spectral behavior of Rrs in Case I sets below
~500 nm, as better captured by the direct comparison of Rrs vs.
c/a in Figure 4. This suggests a possible guideline for the
application of the Case I and Case II ANNs, whereby from
around 0.0075 sr−1 Rrs values at 440 nm tend to increase/
decrease as particulate concentration and c/a decrease in

Case I/Case II waters respectively. In both Case I and Case
II ANNs, for the retrieval of DoLP0+ from DoLPTOA

specifically, we used the following inputs: Rrs and DoLPTOA

at 440, 550 and 665 nm, AOT (440), Ångström exponent, wind
speed, solar zenith as well as sensor zenith and sun-relative
azimuth. For the retrieval of the in-water c/a values from
DoLP0+, we used the same inputs, but we substituted the
three DoLPTOA inputs with the corresponding three DoLP0+.
Note that, since DoLP0+ is the output of the first ANN, work on
the testing set was carried out by feeding the output of the first
neural network directly into the second. We considered several
ANN architectures (Table 3), with batch normalization and
L2 regularization applied on all layers. Rectified linear units
(ReLU) were used as activation functions on all hidden layers,
while the Adam optimizer was used as the solver. The learning
rate was set to an initial value of 0.01, with a rate drop factor of
0.1 every four epochs, and the root-mean-square error (RMSE)
was used as the loss function on all architectures. The final
architectures identified as the best ones after testing are
highlighted in Table 3. Note that since the ANNs operate on
all three wavelengths of interest simultaneously, the total

FIGURE 2
Polar contour plots of DoLPTOA (top row) and DoLP0+ (bottom row) as calculated by the VRT code at 550 nm for two example sets of oceanic and
atmospheric properties, one each for Case I (left column) and Case II (right column). Key input properties in the Case I example were: [Chl] = 0.05 mgm-
3; Ångström exp. = 1.3; wind speed = 4.9 m/s; AOT (440) = 0.11. Key input properties in the Case II example were: [Chl] = 2.95 mgm-3; Ångström exp. =
1.04; wind speed = 3.2 m/s; AOT (440) = 0.11. The anti-solar point is marked in red.
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number of inputs and outputs is 12 and 3 respectively for both
DoLP0+ and c/a, reported as the first and last number of nodes
in the architectures of Table 3.

2.5 Uncertainties

To test the impact of uncertainties on the quality of the final c/a
retrieval, we introduced random errors in the ANN inputs. The
magnitude of the DoLPTOA error was set to 1% following the stated
mission target for PACE. The magnitude of the errors for AOT and
wind speed was instead defined following Gao et al. (2021a), with the

former set to 35.8 e−3.824×AOT(550) (%) and the latter to
1.3 × AOT(550) + 1.38 m/s for wind speeds below 3 m/s and
simply 1.2 m/s for wind speeds above 3 m/s. Finally, the
magnitude of the errors for Rrs was set to 0.003, 0.002 and
0.001 sr−1 respectively for 440, 550 and 665 nm following
Gilerson et al. (2022). Note that AOT and wind speed errors are
given as a function of AOT (550): in our case, AOT (550) was
retrieved from the values of AOT (440) using the corresponding
Ångström exponent values, and the empirical relationships
themselves were extracted by exponential and linear fitting of the
values presented in Figure 9 of the Gao et al. (2021a) paper for AOT
and wind speed respectively. The numbers presented above are all

FIGURE 3
Spectral profiles of Rrs and c/a for the Case I (top row) and Case II (bottom row) test sets. Each grey line represents a single set of properties in the test
set, with solid and dashed black lines representing overall median and quartiles respectively.

FIGURE 4
Distributions of c/a vs. Rrs values in the Case I and Case II test sets.
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used as an absolute scale: each was then paired and further scaled
with a normally distributed random number pε (�x � 0, σ � 1), one
for each corresponding feature within each set of values in the
training and testing sets. AOT and DoLPTOA errors are given as
percentage, and were applied as

x*
i � xi p 1 + εi ppε( ) (4)

with εi scaled as a number between 0 and 1, i.e., as the % value
divided by 100. Here the subscript i denotes either AOT or
DoLPTOA, x*

i is the value after application of the error, xi is the
error-free value and εi is the error as indicated above. Rrs and wind
speed are given in the corresponding absolute units and errors were
therefore applied simply as

x*
i � xi + εi ppε (5)

where all symbols are the same as for Eq. 4 but the subscript i
denotes either Rrs or wind speed. In the following, the step-by-step
uncertainty analysis will be illustrated using the Case II test set only.
Although the exact statistical parameters will differ, the insights
derived from the analysis apply to Case I as well. Case I and Case II
will then be presented at the end in parallel with full uncertainties,
i.e., with both uncertainties in the inputs and using an aerosol model
that differs from the one used during training.

3 Results

3.1 Baseline case

A basic application of the DoLP neural network to the test data,
that is with no consideration for uncertainty in the inputs and with

TABLE 3 Architectures of the ANNs tested for this study. The first and last number in each architecture describe inputs and outputs, with the remaining numbers
describing the nodes in the hidden layers. Chosen architectures for each of the two ANNs in the Case I and Case II models are highlighted in grey. Scores are given
for the baseline case with no uncertainties.

Wavelength 440 nm 550 nm 665 nm

Architecture R2 RMSE e R2 RMSE e R2 RMSE e

Case I DoLP0+ 12 × 16 × 3 0.979 0.018 0.110 0.975 0.029 0.128 0.954 0.060 0.173

12 × 32 × 3 0.984 0.016 0.097 0.984 0.023 0.101 0.972 0.047 0.136

12 × 64 × 3 0.990 0.012 0.075 0.990 0.018 0.081 0.981 0.039 0.112

12 × 32 × 16x3 0.992 0.011 0.070 0.992 0.016 0.070 0.987 0.032 0.092

12 × 64 × 32x3 0.997 0.007 0.043 0.997 0.009 0.041 0.993 0.023 0.067

12 × 64 × 32 × 16 × 3 0.998 0.006 0.038 0.998 0.008 0.035 0.995 0.021 0.061

c/a 12 × 16 × 3 0.983 0.359 0.064 0.989 0.256 0.080 0.991 0.034 0.027

12 × 32 × 3 0.982 0.374 0.067 0.990 0.244 0.076 0.993 0.033 0.026

12 × 64 × 3 0.982 0.380 0.068 0.988 0.265 0.083 0.990 0.034 0.027

12 × 32 × 16x3 0.949 0.611 0.111 0.986 0.290 0.090 0.992 0.037 0.029

12 × 64 × 32x3 0.981 0.390 0.070 0.990 0.250 0.077 0.993 0.034 0.026

12 × 64 × 32 × 16 × 3 0.984 0.355 0.063 0.994 0.187 0.057 0.996 0.044 0.034

Case II DoLP0+ 12 × 16 × 3 0.974 0.031 0.125 0.973 0.014 0.132 0.968 0.024 0.150

12 × 32 × 3 0.984 0.025 0.101 0.986 0.010 0.096 0.983 0.018 0.111

12 × 64 × 3 0.992 0.019 0.076 0.991 0.008 0.079 0.989 0.014 0.090

12 × 32 × 16x3 0.993 0.018 0.074 0.993 0.007 0.068 0.992 0.012 0.075

12 × 64 × 32x3 0.996 0.014 0.057 0.997 0.005 0.046 0.997 0.008 0.051

12 × 64 × 32 × 16 × 3 0.996 0.014 0.055 0.997 0.004 0.043 0.997 0.007 0.045

c/a 12 × 16 × 3 0.707 0.801 0.162 0.669 2.186 0.172 0.848 0.833 0.156

12 × 32 × 3 0.711 0.800 0.161 0.679 2.165 0.169 0.849 0.833 0.156

12 × 64 × 3 0.710 0.804 0.161 0.664 2.236 0.174 0.841 0.863 0.160

12 × 32 × 16x3 0.687 0.835 0.169 0.644 2.278 0.179 0.826 0.895 0.168

12 × 64 × 32x3 0.568 1.055 0.212 0.514 2.909 0.227 0.750 1.118 0.208

12 × 64 × 32 × 16 × 3 0.511 1.143 0.231 0.458 3.174 0.249 0.705 1.219 0.227
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continental-type aerosols consistent with the training data, produces
results that are strongly consistent with expected values (Figure 5,
top row). Statistics, in terms of R-squared values and RMSE, indicate
a strong adherence to a 1:1 relationship, with very small values of e,
defined as the ratio between RMSE and themean of the DoLP values.
In our analysis, we also included mean absolute error (MAE) and
multiplicative bias, recommended by Seegers et al. (2018) as robust
quantities for ocean color algorithm evaluation. MAE, indicative of
the magnitude of the error relative to the measurand, is found to be
~27% across all three wavelengths considered, which is large
compared to appearances and to what R-squared and RMSE
values suggest. The multiplicative bias, indicative of the average
ratio between expected and projected values, similarly suggests that
projected values are as low as ~0.86 times the expected ones at

440 nm. However, both of these coefficients are found to be driven
by the large density of data points that are close to zero. When the
projected DoLP values at the surface are in turn fed into the c/a
neural network, the resulting values are distributed along the x-axis,
in a series of normal or quasi-normal distributions of projected
values over each of the 300 expected c/a values (Figure 5, middle
row). This is a direct consequence of having multiple permutations
of input angles corresponding to only one true c/a value in the water.
When viewed as a density plot, the data points are strongly clustered
at the center of each distribution, which translates to very small error
bars after averaging (Figure 5, bottom row). The average projected c/
a values themselves are clustered along the 1:1 line, as indicated by
the MAE and bias values. However, there is also substantial inherent
variance to the c/a retrieval, with R-squared ~0.71, ~0.68 and

FIGURE 5
Density plot of the results of the retrieval of Case II DoLP0+ by the first ANNwith no uncertainties in the inputs (top row), density plot of the results of
the retrieval of Case II c/a by the second ANNwith no uncertainties in the inputs (middle row), and same results as the latter after averaging across all angle
permutations for each set of properties (bottom row).
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~0.85 at 440, 550 and 665 nm respectively and e values three to four
times larger than in the DoLP0+ retrieval across all three
wavelengths.

3.2 Error in the ANN inputs

To investigate the effect of uncertainties on the overall quality of
the retrieval, we started by introducing randomized errors on the
inputs as described in Section 2.5. As shown in Figure 6 (top row),
the introduction of uncertainty in the inputs produces a significant
spread in the retrieval of DoLP values at the surface, as reflected by
the values of e and MAE in particular. Most data points are still
retrieved close to the 1:1 line, as indicated by the consistently high
R-squared values. At the same time changes in the bias are negligible
and still driven by a large number of values near zero. When fed into
the c/a neural network, the DoLP values at the surface produce
interesting results, in the sense that, as with DoLP, the spread of the
data points distribution increases, but the values of c/a after
averaging over all angular permutations show little change from
the no-uncertainty scenario, with the only difference an expected
small increase in the width of the error bars. All statistical measures
considered are seen to differ at most by 2% or less compared with the
no-uncertainty scenario (Figure 6, bottom row), sometimes even
improving on the baseline scores, highlighting how the changes

induced by the error in the inputs are small enough to be superseded
by the small amount of noise inherent to the ANN retrieval process.

3.3 Aerosol mix changes

As described in the Methods section, the neural networks for the
Case II synthetic dataset were trained on data produced using an
aerosol scattering model configured around a “continental” mix,
selected to simulate coastal waters, proximal to an ideal landmass.
Complementing the analysis done so far on similarly configured
testing data, we produced a twin testing dataset reproducing the
previous testing data in all respects save for the aerosol scattering
model, which was instead set to “oceanic.” Feeding the resulting
inputs into the neural network, we investigated the probable effects
that an unexpected aerosol mix would have on the DoLP and c/a
retrievals. The effect is seen to be small overall on the DoLP retrieval,
with a larger variance at 550 nm and 665 nm. MAE is ~6% higher at
440 nm, and ~15% higher at 550 nm and 665 nm. Similarly, values
of e are about 2 times and 4 times those of the baseline in the case of
440 nm and 550/665 nm respectively (Figure 7, top row). Overall,
the effect is seen to be larger than that induced by uncertainties on
the other ANN inputs. In contrast, the multiplicative bias, which was
largely unchanged between the baseline and the input uncertainties
case, is lower here, by ~7%, ~14% and ~15% at 440 nm, 550 nm and

FIGURE 6
Density plot of the results of the retrieval of Case II DoLP0+ by the first ANN with errors applied to the inputs (top row), and results of the retrieval of
Case II c/a by the second ANN with errors applied to the inputs after averaging across all angle permutations for each set of properties (bottom row).
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665 nm respectively. Similar to the input uncertainties case, there is
little change from the baseline scenario in the c/a retrieval, with only
slightly larger error bars. All statistical measures considered are seen
to differ by at most ~1% compared with the baseline scenario
(Figure 7, bottom row).

3.4 Combined uncertainties

For the last comparison, input uncertainties and a non-standard
aerosol mix were put together to examine their combined impact,
now both in the Case I and Case II scenarios. As expected, deviations
are largest compared with the baseline scenario. For Case II, the
DoLP0+ retrieval presents bias values smaller by ~7%, ~13% and
~14% and MAE values larger by ~8%, ~17% and ~16% for 440 nm,
550 nm and 665 nm respectively (Figure 8, top row). RMSE and e
values are both found to be ~2.5 times and ~4.5 times those of the
baseline for 440 nm and 550/665 nm respectively. Nevertheless,
changes in the average projected values in the c/a retrieval
remained negligible, with all statistical measures found to differ
at most by 2% or less compared with the baseline scenario (Figure 8,
bottom row). For Case I, the DoLP0+ retrieval shows results similar
to the Case II scenario, with statistical scores that are better across
the board, particularly in terms of bias, with the sole exception of
665 nm, where an increased dispersion in the retrieved values
induces a larger MAE score (Figure 9; top row). The most

interesting differences are seen in the c/a retrieval for Case I,
which is substantially more accurate than its Case II counterpart,
with MAE values very close to 1 at all wavelengths (Figure 9, bottom
row). In addition, where the c/a retrieval in Case II appeared roughly
homoscedastic, i.e., with a variance that is about constant for
increasing values of c/a, Case I appears instead heteroscedastic,
i.e., the variance (as well as the width of the error bars) increases
markedly as c/a values increase.

4 Discussion

4.1 Synthetic dataset

The entirety of this work is predicated on the application of
neural networks to synthetic datasets. While the construction of
such datasets was made necessary by the lack of actual
measurements in quantities large enough for training purposes,
the fact remains that, at this point in time, no definitive judgment
can be made on the quality of the DoLP0+ and c/a retrieval by the
ANNs compared to real values as would be measured in situ by
conventional methods. On the other hand, the datasets were
constructed using a highly detailed bio-optical models, already
used in the past with good results to investigate the relationship
between polarization and IOPs in published literature (Figure 1;
Tables 1, 2). The model was further paired with a state-of-the-art

FIGURE 7
Density plot of the results of the retrieval of Case II DoLP0+ by the first ANN with aerosol mix changes (top row), and results of the retrieval of Case II
c/a by the second ANN with aerosol mix changes after averaging across all angle permutations for each set of properties (bottom row).

Frontiers in Remote Sensing frontiersin.org12

Agagliate et al. 10.3389/frsen.2023.1060908

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1060908


radiative transfer software for final calculations and a simulated
atmosphere-ocean system with multiple layers defined along
accepted standards. This study is therefore at least a valid
exploration of the potential for ANNs to define a direct retrieval
pipeline from PACE-like polarization data to surface layer IOPs in
the ocean. To realize the full potential of the approach, two separate
data strategies become apparent to deal with the two steps of the
ANN retrieval. Pairs of DoLPTOA and DoLP0+ measurements are
expected to remain unavailable until the launch of the PACE
mission itself, and as such this part of the algorithm will likely
only be able to be developed against a real-world reference post
factum. Pairs of DoLP0+ and surface layer IOP values can instead be
retrieved right now, so that it is desirable to start building up a
dataset as soon as possible. However, in both cases, having a solid
synthetic dataset to work with will also be beneficial in the sense that
it will enable transfer learning, i.e., an incremental refinement of the
pre-trained networks by the addition of smaller amounts of new
data. Consequently, while remarking the exploratory nature of this
study, we expect the ANNs developed so far (and indeed any
network developed along similar lines) to constitute a useful
basis for the eventual development of newer iterations once real
data becomes available in sufficient quantities. As it stands, our
results suggest that an ANN approach to the direct estimation of
surface layer IOPs from TOA polarization is a practical and useful
tool for PACE applications that will work well in association with
other algorithms developed to process PACE data.

4.2 Quality of the results

The quality of the c/a retrieval is found to be high even after the
introduction of several uncertainties on the ANN inputs and the
aerosol mix used in the radiative transfer calculations (Table 3;
Figures 5–9), particularly for 440 nm and 665 nm. The intermediate
step of DoLP0+ retrieval appears to be the most susceptible to the
introduction of uncertainties, while c/a estimations after averaging
appear to be consistently robust, with the most evident effect being a
widening of the error bars around themean values rather than a shift
in the values themselves. This is due to the fact that additional
variance in the retrieval of DoLP0+ translates to larger standard
deviations but virtually unchanged means in the distribution of c/a
values retrieved in the second ANN step. For reference, as reported
in Section 3.3, for Case II the DoLP0+ retrieval in the combined
uncertainties scenario deviates from the baseline with bias values
smaller by 7%, 13% and 14% andMAE values larger by 8%, 17%, and
16% for 440nm, 550nm and 665 nm respectively (Figures 5–8).
RMSE and e values are also both found to be ~3.5 times and
~4.5 times those of the baseline for 440nm and 550/665 nm
respectively. Conversely, changes in the average projected values
in the c/a retrieval are negligible, with all statistical measures found
to differ at most by 2% or less compared with the baseline scenario.
Comparatively, Case I retrieval is found to be even more accurate.
For DoLP0+, bias scores are close to 1 across all three wavelengths of
interest, withMAE values similarly improving on Case II scores with

FIGURE 8
Density plot of the results of the retrieval of Case II DoLP0+ by the first ANNwith combined uncertainties (top row), and results of the retrieval of Case
II c/a by the second ANN with combined uncertainties after averaging across all angle permutations for each set of properties (bottom row).
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the sole exception of 665 nm. For c/a, the quality of the retrieval is
particularly high, with both bias and MAE values close to 1 at all
three wavelengths (Figure 9). As an additional detail, the variance of
the Case I c/a retrieval appears to be markedly heteroscedastic, i.e., it
increases as c/a increases, while the Case II c/a retrieval displays
homoscedasticity, i.e., a somewhat constant variance across the
range of c/a values. While on one hand the robustness of the c/a
estimations is a desirable characteristic, on the other hand it seems to
indicate that there are limited avenues for further improvement
without a substantial reinterpretation of the approach. Indeed, at
least in the Case II scenario, the error bars themselves, even in the
combined uncertainties scenario, are small enough that deviations of
the estimated c/a values from the 1:1 comparison with expected
values cannot be ascribed to randomness, particularly at 550 nm
where such deviations are found to be highest. The comparison
instead highlights an inherent variance to the DoLP0+-c/a
relationship that, for the moment, represents a ceiling to the
quality of the retrieval reachable with the current iteration of our
ANN approach. Furthermore, the robustness of the c/a retrieval
across many hundreds of different angular combinations appears to
contrast with previous findings that indicated the relationship
between DoLP0+ and c/a values to be strongly affected by angular
geometry (Ibrahim et al., 2016; Gilerson et al., 2020). Although no
definitive explanation can be given at this time to reconcile this
discrepancy, it appears likely that the higher dimensionality of the

relationship as captured by the ANNs (12 inputs and 3 outputs over
three separate wavelengths), with the explicit inclusion of Rrs values
and opposed to the previous simple comparison of DoLP0+ vs. c/a at
individual wavelengths, is sufficient for the networks to evaluate
probable c/a values at most angles. Indeed it is worth noting that,
while in principle some specific angles are optimal in terms of
retrieval, i.e., φv � 90° (Ibrahim et al., 2016; Gilerson et al., 2020),
outside of glint-heavy directions such as φv � 180° near the antisolar
point or φv � 0° most other angular combinations will still offer
some predictive power even with a simple DoLP vs. c/a comparison
(cf. Figure 8 in Ibrahim et al., 2016 for the below-water case), adding
to the plausibility of higher dimensionality as a sufficient
explanation for the performance of ANNs in this context.

4.3 HARP2 sampling

Studying the distribution of all possible angular permutations is
both necessary in terms of ANN training and useful in terms of
identifying what to expect in terms of the variance of the results.
However, in actuality, the HARP2 instrument will scan its field of
view across 10 view lines over the +-57° along-track range, each with
a +-47° cross-track range. This means that, realistically, any given
point on Earth’s surface will be imaged at most 10 times over a single
transit, possibly less in case of cloud coverage or any other of the

FIGURE 9
Density plot of the results of the retrieval of Case I DoLP0+ by the first ANNwith combined uncertainties (top row), and results of the retrieval of Case I
c/a by the second ANN with combined uncertainties after averaging across all angle permutations for each set of properties (bottom row).
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various quality flags. Therefore, it is important to consider how the
practical concerns of sampling will affect the results seen so far. The
statistical distributions considered so far already contain a large
amount of information on what to expect. In the Case II scenario,
the sets of projected c/a values produced for each set of oceanic and
atmospheric properties across all angle permutations are distributed
in a way that is found to be close to normal in all cases and at all
wavelengths. Indeed, one in five is found to be strictly normal after
testing for normality using the Shapiro-Wilk test at a p =
0.05 threshold (Shapiro and Wilk, 1965). In this situation,
although the Nsample polarization measurements (with Nsample

between 0 and 10) for any given point on the surface taken
during a realistic PACE transit are not truly independent from
each other (the various angular configurations being governed by
orbital dynamics), on first approximation we may treat this problem
in terms of the sample mean of a population, where the population
in this case is the collection of all angular permutations and the
samples are randomly selected from it. This is all the truer because
the distribution of the sample mean will tend towards being normal
even if the population distribution is not exactly normal, as indicated
by the central limit theorem. Within this context, the standard error
of the sample mean is

σμ � σp������
Nsample

√ (6)

where σp is the standard deviation of the population. Since the
error bars described so far are themselves defined as μp ± σp,
where μp is the population mean, we can readily reverse the
problem and determine how likely it is for the mean of a sample
of c/a values retrieved by the ANNs in a realistic scenario to fall
within the ± σp error bars. Inverting Eq. 6 we simply obtain
σp � �������

Nsample
√

× σμ, and since μμ � μp by definition (where μμ is
the mean of the sample mean distribution) and the probability
that a normal deviate lies in the range between μ − kσ and μ + kσ
is given by erf(k/ �

2
√ ), where erf is the error function, we find that

on first approximation the mean of the c/a values retrieved from a

set of realistically sampled measurements will fall within the error
bars described so far in more than 90% of cases with as few
measurements as Nsample � 3. In the Case I scenario, the
distributions of the sets of projected c/a values across all
various angular permutations fail to test for normality in a
vast majority of cases. While still having mean values close to
the 1:1 optimum (Figure 9), they are instead found to feature long
tails biased towards an overestimation of the expected c/a values.
This violation of the assumptions used to validate the
applicability of Eq. 6 to the Case II retrieval suggests that Case
I is likely to be much more susceptible to smallNsample values. To
offer further confirmation of all this, it is possible to construct an
astrodynamics model to simulate the orbit and attitude of PACE
at any given time, allowing for the reconstruction of sets of
realistic angles over which to experiment (Figure 10). To do so,
we followed the closed-form geolocation algorithm presented by
Patt and Gregg (1994), by which it is possible to obtain geodetic
coordinates on the surface and the azimuth and zenith angles of
both sensor and Sun for any sensor view orientation given the
position and velocity of the parent satellite. Position and velocity
were themselves obtained through the MATLAB Aerospace
toolbox, with which we defined the PACE orbit using the
intended parameters of 676.5 km altitude with a 98°

inclination. The orbit was further characterized with a mean
local time of the ascending node of 1 p.m., as per PACE
specifications, and with an arbitrary starting date and time of
2024–06–01 at 8:59:23 UTC, resulting in a corresponding
equation of time of 2.06 min and an apparent right Sun
ascension of 4:39:15. Orbit ephemeris data were generated for
a 2-days period following this arbitrary definition date. With
these position and velocity tables defined, we randomly selected
polling times for each set of properties in the testing set under the
condition that, in cartesian coordinates, the resulting
Z-component of the velocity was positive (i.e., the satellite was
on the sunlit side of the orbit) and the resulting Z-component of
the position was within ±4,200 km to avoid extreme angles at the

FIGURE 10
HARP2 scan configuration (red lines) for a given PACE orbital position (green circle) right above a given fixed point (black circle) on the surface of an
Earth-sized sphere (left panel), and the ten PACE orbital positions for which the HARP2 scan lines overlap at the fixed point over a single transit (right
panel).
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poles. The position and velocities were then fed into the
geolocation algorithm together with those of 240 neighboring
orbital positions corresponding to a resolution of 5 s in a ±10 min
window. The area thus defined was finally searched to identify the
orbital positions by which each of the 10 HARP2 scan lines
intersected the geodetic coordinates of the point directly at the
nadir of PACE at the randomly selected polling time (Figure 10).
The 10 positions were randomly reduced to Nsample � 3, and the
corresponding sensor view angles θv, relative azimuth angles ϕv
and Sun zenith angles θs selected from the 5,655 pre-calculated
combinations and fed together with the other corresponding

properties in the testing set into the neural networks.
Consistently with expectations, the results for Case II don’t
majorly deviate from what was previously established in
Figure 8, corroborating the implications of our statistical
argument (Figure 11). Similarly, the Case I results do instead
demonstrate a substantial increase in the variance of the c/a
retrieval, confirming that, at least in our formulation, small
Nsample values are likely to adversely affect the quality of the
Case I retrieval (Figure 12). Interestingly, and in contrast with the
ensemble results of Figure 9, the comparison between projected
and expected Case I c/a values appears to become homoscedastic,

FIGURE 11
Results of the retrieval of Case II DoLP0+ by the first ANN (top row), Case II c/a by the second ANN (middle row) and averages of the retrieved Case II
c/a values (bottom row) after realistic sampling via simulation of the PACE orbit and of the HARP2 field of view for Nsample � 3. Color groupings each
pertain to an individual set of properties within the testing set.
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meaning that small Nsample values may disproportionately affect
low c/a values, while leaving the variance at high c/a values
largely unchanged.

5 Conclusion

In this study we have explored the application of neural
networks to the dual task of retrieving DoLP values at the
ocean surface level from top-of-atmosphere DoLP values and
in-water c/a values from DoLP values at the surface. The work

was done within the context of the polarization measurements
that are expected to be available once the upcoming PACE
mission is launched, and the approach presented in this work
uses input data that is expected be available within the PACE data
environment. It is therefore designed to work well in tandem with
other algorithms developed to process PACE polarization
measurements. A scarcity of real-world data made the
employment of synthetic datasets a necessity for the purpose
of training our ANNs, so that no definitive judgement can be
made on the quality of the ANN retrieval against real world data.
Nevertheless, the specific characteristics of neural networks,

FIGURE 12
Results of the retrieval of Case I DoLP0+ by the first ANN (top row), Case I c/a by the second ANN (middle row) and averages of the retrieved Case I c/a
values (bottom row) after realistic sampling via simulation of the PACE orbit and of the HARP2 field of view forNsample � 3. Color groupings each pertain to
an individual set of properties within the testing set.

Frontiers in Remote Sensing frontiersin.org17

Agagliate et al. 10.3389/frsen.2023.1060908

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1060908


including their capacity for adaptive re-training through transfer
learning and the addition of new data, imply that the algorithms
presented here will constitute a solid basis for quick iteration and
further refinement once PACE data will become available. In the
preliminary results presented in Agagliate et al. (2022), we
identified a detailed analysis of the uncertainties in both the
radiative transfer modeling and the ANN inputs as the path
forward in the completion of our study. The introduction of
uncertainties is found to have a large impact on the retrieval of
DoLP0+ values, while the retrieval of c/a is found to be robust,
with the largest effect observed in the overall size of the error bars
but only minor changes in the mean c/a values. For both Case I
and Case II, the quality of the c/a retrieval is high. For Case II, R2

was equal to 0.712, 0.679, and 0.848 at 440, 550, and 665 nm
respectively. Multiplicative bias is also small, underestimating
expected values by only 2.8%, 3.1%, and 2.5% on average at those
same wavelengths. Multiplicative MAE similarly indicates, on
average, measurement errors of 13.9%, 16.1%, and 13.8%
respectively. Case I results were even better, with R2 equal to
0.981, 0.986, and 0.983 at 440, 550, and 665 nm respectively.
Multiplicative bias was once again small, underestimating
expected values by 0.8%, 6.1%, and 4.1% on average at the
same wavelengths, while multiplicative MAE indicated
measurement errors of only 4.3%, 7.1%, and 4.2% on average.
The robustness of the c/a retrieval across many hundreds of
different angular combinations appears to contradict earlier
results that identified the DoLP0+-c/a relationship to be one
particularly affected by the relative geometry of Sun and
sensor (Ibrahim et al., 2016; Gilerson et al., 2020). It appears
likely that the higher dimensionality of the relationship as
captured by the neural networks (using 12 inputs over
3 wavelengths), specifically with the addition of Rrs, allows our
algorithms to maintain discriminative power at all angle
configurations. However, particularly for Case II, the general
robustness of the approach is also found to imply that the
inherent variance of the results in terms of the final retrieval
of c/a values represents the current quality ceiling in the ability of
our ANN to capture the relationship between the inputs and c/a,
and may not be improved without a reinterpretation of the
algorithm as a whole, e.g., with a radically different
architecture or selection of the inputs. A final analysis step
was carried out to examine the impact of realistic sampling on
the expected results, i.e., with at most 10 measurements per
transit per location, in contrast with the over 5,000 angular
permutations considered during training. Due to the statistical
distribution of the results, it is expected that averaging after
sampling in such realistic conditions should, in a Case II
scenario, follow closely the type of distribution presented in
our study with as few as 3 measurements per location.
Conversely, in a Case I scenario, this realistic averaging is
instead expected to be susceptible to increased variance due to
underlying distributions featuring long tails biased towards
overestimation. Both expectations are found to be

corroborated by results produced using an astrodynamics
model that replicates the expected PACE orbit and the viewing
area of the HARP2 instrument installed on it.
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